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Fig. 1. Animation Transfer from Unseen Motion to Different Characters. We present a self-supervised method to transfer coarse motion sequences,
embedded in a learned Kinetic Code (KC) space, to full body motion. Samples from the KC space can be consumed by our method, Self-supervised Motion
Fields (SMF), to produce mesh animations. Our method is trained with sparse signals and can be used for motion interpolation . We do not assume access
to any morphable model, canonical template mesh, or deformation rigs. Left shows various sparse motion inputs (3D keyframes, Mixamo sequences, or
monocular video) that can be embedded into the learned KC space and decoded, and consumed by temporally coherent motion prediction via SMF to produce
animations for different characters (right), with varying topology and shapes. SMF can faithfully transfer human motion to non-humanoid characters.

Animation retargetting applies sparse motion description (e.g., keypoint
sequences) to a character mesh to produce a semantically plausible and
temporally coherent full-body mesh sequence. Existing approaches come
with restrictions — they require access to template-based shape priors or
artist-designed deformation rigs, suffer from limited generalization to unseen
motion and/or shapes, or exhibit motion jitter. We propose Self-supervised
Motion Fields (SMF), a self-supervised framework that is trained with only
sparse motion representations, without requiring dataset-specific annota-
tions, templates, or rigs. At the heart of our method are Kinetic Codes, a novel
autoencoder-based sparse motion encoding, that exposes a semantically rich
latent space, simplifying large-scale training. Our architecture comprises
dedicated spatial and temporal gradient predictors, which are jointly trained
in an end-to-end fashion. The combined network, regularized by the Kinetic
Codes’ latent space, has good generalization across both unseen shapes and
new motions. We evaluated our method on unseen motion sampled from
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AMASS, D4D, Mixamo, and raw monocular video for animation transfer on
various characters with varying shapes and topology. We report a new SoTA
on the AMASS dataset in the context of generalization to unseen motion.
Code, weights, and supplementary are available on the project webpage at
https://motionfields.github.io/.

CCS Concepts: « Computing methodologies — Machine learning ap-
proaches; Shape analysis; Motion processing; Motion capture; Temporal
reasoning; Animation.

ACM Reference Format:

Sanjeev Muralikrishnan, Niladri Shekhar Dutt, and Niloy J. Mitra. 2025.
Template-free and Rig-free Animation Transfer using Kinetic Codes. ACM
Trans. Graph. 44, 6, Article 261 (December 2025), 11 pages. https://doi.org/
10.1145/3763309

1 Introduction

Motion brings characters to life. To build any digital twin world,
be it for scenario planning, games, or movies, adding motion to
static characters is a fundamental requirement. Manually authoring
full-body motion is tedious, error-prone, and requires significant
effort from skilled artists. This quickly becomes expensive when
scaling to long sequences or animating many different characters.
Hence, researchers seek data-driven solutions.
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Traditional approaches investigate this problem with explicit
priors — statistical body templates (e.g., SMPL [Loper et al. 2015]
for humans, CAFM [Sun and Murata 2020] for animals) to model
shape and pose variations or constructing specific character rigs
to transfer joint motion to full body motion via skinning weights.
These approaches are simple, popular, and robust, but come at the
cost of having to first build an expressive shape space along with a
corresponding pose space, and are restricted to specific templates.

Automating these workflows with learning-based solutions has
gained popularity: learning a space of stick figure character motion
(e.g., neural motion field [He et al. 2022]) or phase-based character
control [Holden et al. 2017]); enabling deformation transfer from a
source-target pair to a new shape via neural Jacobian fields [Aiger-
man et al. 2022; Muralikrishnan et al. 2024]; or learning skinning
weights from a set of annotated rigged characters [Qin et al. 2023;
Xu et al. 2020]. These approaches, however, require various levels
of intermediate supervision, are limited in their handling of motion
or shape variations, and suffer from limited generalization.

Given a coarse motion specification, we transfer animation to a
full-character mesh, without access to any rig or morphable template,
at train or test times. A natural approach is to treat this as a sequence
prediction problem. However, this quickly leads to memory issues as
the animations’ length or the meshes’ resolution increases. Increas-
ing the network capacity adversely affects the situation, leading
to overfitting as we often have sparse/limited training data. Also,
treating the problem at the frame level is efficient, but leads to jittery
motion without any temporal coupling.

Inspired by the recent success of latent space diffusion mod-
els [Rombach et al. 2021] over pixel space diffusion models, we ask if
a similar latent space can be designed for (sparse) motion sequences.
To this end, we propose Kinetic Codes, a temporally-informed light-
weight motion autoencoder, that we train over a collection of sparse
(humanoid) motion sequences across all types of motion. (Since we
only rely on keypoints, instead of body meshes/template, we call
the latent space kinetic instead of kinematic.) Regularized by this
latent space, we train a spatial and a temporal gradient predictor
network. We couple the networks through differentiable spacetime
integration and supervise the framework, in an end-to-end fashion.

By representing source motion using only keypoints, we elim-
inate the need for geometric constraints such as 2-manifoldness,
watertightness, or fixed triangulation in source meshes. Moreover,
our motion representation allows for 2D source motion as input,
which can be transferred to any stylized character (see Figure 1).
This keypoint-based representation simplifies motion capture and
facilitates sampling and interpolation of motions.

We evaluate SMF for generalization across diverse shapes and
unseen motion, and compare against various alternatives. We eval-
uate our setup on a range of diverse shapes and motion datasets
(e.g., AMASS, D4D, Mixamo, monocular video). In summary, we:
(i) propose a self-supervised animation transfer framework regu-
larized by kinetic codes, a learned temporally aware latent space;
(ii) develop a rig- and template-free animation transfer framework
based on simple keypoints as input that is easy to train with sparse
supervision and generalizes robustly to new motions and stylized
characters; and (iii) report a new SoTA on the AMASS dataset and
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show realistic motion transfer to in-the-wild stylized characters
using different 3D as well as 2D coarse space motion specifications.

Code, weights, and supplementary are available on the project
webpage at https://motionfields.github.io/.

2 Related Works

Encoding shape deformation. Parameterized deformation approaches
represent 2D or 3D shapes through a predetermined function of
shared parameters and capture deformations as variations of these
parameters. A popular example of such models is morphable mod-
els [Egger et al. 2019]. Such techniques encompass cages, explicit
formulations [Ju et al. 2005] or neural approaches [Yifan et al. 2020],
blendshapes [Lewis et al. 2014], skinned skeletons [Jacobson et al.
2014], Laplacian eigenfunctions [Rong et al. 2008], etc. Linking
these parameters to the shapes’ surface typically necessitates man-
ual annotation of weights, commonly called weight painting, in
3D authoring tools. Alternatively, with access to sufficient super-
vision data, data-driven approaches can yield realistic neural rigs,
as exemplified by Pinocchio [Baran and Popovi¢ 2007], RigNet [Xu
et al. 2020], skinning-based motion retargeting [ Aberman et al. 2020;
Marsot et al. 2023; Zhang et al. 2023], and skeletal articulations with
neural blend shapes [Li et al. 2021a]. Unsupervised shape and pose
disentanglement [Zhou et al. 2020] proposes learning a disentangled
latent representation of shape and pose, facilitating motion transfer
using shape codes, dependent on registered meshes and maintaining
identical connectivity. To plausibly animate these parameterized
shapes over time, the parameters should evolve dynamically, weigh-
ing the mesh. Although these methodologies require access to body
templates and/or rigs, they can still produce jittery results due to
loose coupling of individual frame predictions.

Notably, Skeleton-free pose transfer [Liao et al. 2022] aims to al-
leviate the need for rigs by treating the character pose as a set of in-
dependent part deformations. By learning the skinning weights and
deformations associated with each module, it can match the source
pose using linear blending of skinning weights. While it achieves im-
pressive results in pose transfer, being a per-frame method, it suffers
from artifacts and lacks temporal coherence when applied to anima-
tion transfer, as observed in our results. Furthermore, its reliance
on both source and target shapes being provided in a rest T-pose
presents a practical limitation, as such canonical poses are often
difficult to define for non-humanoids. This dependency challenges
its classification as a truly rig-free method.

Modeling motion as sequence prediction. Deep recurrent neural
networks are capable of modeling time and shape sequences using
LSTMs to predict human joints [Fragkiadaki et al. 2015], generate
motion in-betweening [Harvey et al. 2020], and to learn a motion
field through time [He et al. 2022]. These approaches require access
to templates/rigs, and large datasets of joint motion since they are
discrete time representations. Qiao et al. [2018] utilize mesh convo-
lutions with LSTMs to deform vertices through time; while, Motion
Diffusion [Raab et al. 2023] uses local attention to capture motifs of
a single motion and combines it with a diffusion UNet module to
produce motion extrapolation and in-betweening. The main chal-
lenge is handling long (extrapolation) sequences while still being
able to generalize to unseen motion. In this work, we propose using
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Augmented Neural ODEs [Dupont et al. 2019], operating through
temporally-aware kinetic codes, to model time continuously instead
of using discretized sequential networks such as LSTMs.

Modeling motion using morphable templates. Temporal surface
effects can be modeled, physically correctly, by simulating the un-
derlying soft tissues with finite element methods [Chadwick et al.
1989; Fan et al. 2014]. However, this direct simulation is often slow
and requires artists to design the underlying bone and muscle struc-
ture [Abdrashitov et al. 2021]. To overcome the stiffness problem
and speed up the simulation, reduced-order models have been pro-
posed [Modi et al. 2020; Park and Hodgins 2008]. When character
rigs are available, approaches have been proposed to add soft tis-
sue deformation as an additive per-vertex bump map on top of a
primary motion model. Santesteban et al. [2020] use this approach,
AMASS [Mahmood et al. 2019] imparts secondary motion using the
blending coefficients of the SMPL shape space [Loper et al. 2015],
while Dyna [Pons-Moll et al. 2015] learns a data-driven model of
soft-tissue deformations using a linear PCA subspace. However,
these methods require access to primary motion via a skeleton rig
and are restricted to humans registered to a canonical template.

Temporal Residual Jacobian (TRJ) [Muralikrishnan et al. 2024]
uses NJF and ODE for motion retargeting, and demonstrates good
generalization across shapes. However, TR] requires motion anno-
tation and also access to SMPL template during training, has to be
retrained for different motion classes, produces jitters due to per-
frame prediction, and does not generalize to unseen motion. Unlike
TRJ, which requires a template to learn motion transfer between dif-
ferent shapes, our self-supervised method reconstructs the original
motion on the same shape, eliminating the need for annotated data.

3 Algorithm

Our goal is to animate unrigged triangulated meshes of 3D char-
acters, conditioned on coarse motion signal. These motion control
parameters are defined at a few keypoints of the body, can be varied
in representation (e.g., 2D or 3D), and specify the target pose per
frame. We learn to map these coarse keypoint parameters to dense
3D meshes and, as output, generate an animated 3D mesh at every
frame described by the input motion. This nullifies the need for any
consistent mesh template or fixed triangulation for both the source
motion as well as the target character. Additionally, our method gen-
eralizes to unseen motion targets and unseen body shapes, learns
from sparse datasets containing a mix of motion examples, and can
be applied to long motion sequences.

3.1 Overview

Our method is a module named Self-Supervised Motion Fields (SMF)
that maps inputs describing a target shape, X, and motion, {yx}, to
per-frame motion as 3D meshes,

Xk == SMF(...), (1)

where X} denotes the mesh vertices at frame k.
Input representation. Our inputs are coarse motion parameters,
defined as yg, which characterize the pose required in each frame k

and the target triangulated mesh defined as Xj. In our experiments,
we have tested k ranging from 200 (short) to 4000 (long) sequences.
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We define yj at fixed keypoints extracted automatically from a given
body. Specifically, yx is a Njoinss X D vector at each time step, where
Njoints is the number of keypoints/joints and D is the dimension-
ality of the chosen input representation. This representation can
be 3D keypoint locations on a mesh, 2D keypoints defined on a
stick figure frame, or 3D relative Euler angles computed according
to the kinematic tree of the chosen pose space. In this work, we
focus on results with 2D and 3D keypoints, as we observe their
performance to be more robust than 3D relative Euler angles. Our
method is self-supervised as we automatically extract the keypoints
from mesh sequence.

We now define our module from Equation (1) as,

X := SMF(yx, Xo, C), 2)

where C describes additional geometric features of the target charac-
ter such as centroids, normals, and Wave Kernel Signatures [Aubry
et al. 2011] computed on the faces of X, and encoded per-face using
a shallow PointNet [Qi et al. 2016]. These additional features estab-
lish correspondence during inference on unseen in-the-wild shapes.
We jointly train the PointNet network and other networks in our
system. Figure 2 presents an overview of our method.

Keypoint extraction. We semi-automatically extract the keypoints
Y- We start with a one-time manual annotation of one human
and one animal shape, performed by selecting mesh faces at joint
locations. These sparse annotations are then automatically prop-
agated across all characters and motions using point correspon-
dences computed with Diff3F [Dutt et al. 2024]. Our framework is
robust to variations be-
tween character setups; for

One-time Annotation Keypoints Mapped

example, it bridges the gap S

even when target keypoint :)L. N -
locations (e.g., from Mix- & A ' |

amo) differ from the source. %F:l \

This flexibility is possible

because our method only

requires the number and order of keypoints to be consistent, not
their exact spatial positions. This process, where we annotate just
two shapes once, allows us to robustly handle diverse character and
motion datasets. For extracting 2D keypoints from RGB videos, we
use HRNet [Sun et al. 2019], a pretrained pose extractor.

3.2 Kinetic Codes: Temporally-Informed Motion
Representation

At the core of our method is the shape deformation module fp. We
observed that naively passing the extracted coarse motion parame-
ters yx to fp impairs training, and leads to poor generalization and
artifacts on unseen motions (see ablation in Section 4). This is un-
surprising as an individual yx does not contain any temporal motion
information or context. Therefore, we first embed y in the latent
space of an autoencoder. By coupling information across time, this
representation leads to smoother interpolation, thereby enhancing
generalization to unseen motions.

Further, given the sparsity of training data, we find that using the
displacements of the motion parameters as inputs, instead of their
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Fig. 2. Method overview. We present a self-supervised learning setup to transfer sparse motion information, specified in the form of keypoints over time, to
target characters producing full-body motion. Top: During training, given a motion dataset we extract sparse keypoints from the meshes and encode them to a
novel Kinetic Code representation. We then train two networks to map the rest shape and the Kinetic Code to the full body motion, with only mesh-level
reconstruction loss. Bottom: At inference, we drop in stylized characters (Hole Man) and unseen motion inputs to obtain full-body character animation.

absolute values, significantly boosts generalization to unseen mo-
tion. Therefore, we express yx as displacement vectors with respect
to the first frame motion parameter y; as,

=y - o €)

We then train a multi-headed attention auto-encoder with self-
attention to reconstruct y)‘f as,

E (e AV Vg1, D @)
Dy (z1), 5)

where &, O, are multi-headed attention encoder and decoder net-
works, respectively; zj is the per-frame latent motion representation,
referred to as kinetic code, of the same dimensionality as yx, and
Yk are the decoded motion displacements; N refers to number of
frames.
The length of the sequence o - 7
can vary across motion . . .
samples. Note that we use . _ )
attention on the full se- P : R
quence as context, and
hence a single frame zj has
an understanding of the
broader motion sequence.
We train the auto-encoder by minimizing the reconstruction loss,

Zk

Vi

Nf
Ly = ik = VI ©)
k=1

Thus, we obtain a temporally-informed latent motion representation
zk, which is more conducive to interpolation, resulting in improved
generalization to unseen motions and unseen shapes. For our defor-
mation module (described next), we only use zj as the per-frame
motion representation, and freeze 8}, and Dy.

3.3 3D Shape Posing via Deformation Module

Inputs to our shape deformation module fp comprise the initial
configuration, specifically the shape X, in its canonical rest pose,
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the learned motion latents zx, and the geometric features C (derived
from Xj). The module fp is designed to forecast the pose for each
time step k € [1, Ny]. While fp could be trained to directly forecast
the target vertex positions, such an approach results in artifacts,
including flipped and folded faces. Following neural gradient space
processing [Aigerman et al. 2022; Muralikrishnan et al. 2024], we
use a simple MLP to predict affine transformation matrices, labeled
as Jacobians, at the centroids of the mesh faces, thus encoding
relative transforms [Sumner and Popovié 2004]. Specifically, we
predict final vertex positions using predicted Jacobians, integrated
through a differentiable Poisson solver to solve a system of linear
equations. We supervise this using vertex-to-vertex and Jacobian
losses to ensure accuracy in matching ground-truth data; this frees
us from requiring additional annotation data. This improves shape
consistency and can model various deformations by predicting affine
transformations to mesh faces. Concretely, we define,

I = folezk0)
Tk Jo+ I8 =Jo+ fo (o 2k, ©), (7)

where Jy is the Jacobian of the initial frame shape X, and ]]f are
intermediate residuals predicted by fp, which are added to J; to
produce the Jacobian Ji for the k*” frame. We found that predicting
the Jacobians using the Kinetic codes, coupled with residual con-
nections leads to significantly faster and well-behaved convergence
and better generalization. Note that Jj is the identity transforma-
tion projected on the local basis of each face of Xj by rotation. All
Jacobians are predicted in the central coordinate frame defined by
the local bases of the faces of Xj.
We can now directly ob-
tain final vertex positions
using the Poisson Solver 4
on the predicted Jacobians. L‘EQ
However, as we drift away
from the pose of the initial shape X or when inferring on unseen mo-
tion parameters, accumulated error leads to shape inconsistencies
and artifacts. Additionally, fp utilizes only coarse motion param-
eters and, by itself, is unable to produce temporally coherent and

N ; Jp € R¥S
b |



smooth motions on dense meshes for long sequences. Hence, we use
an Augmented ODE based formulation, described next, to enable
temporally coherent predictions.

3.4 Temporally Coherent Motion Prediction

Motion prediction. We introduce a second stage that learns to
predict a dynamic correction to the initial pose estimate to enforce
temporal coherence. We predict the sequences in chunks of consec-
utive frames, i.e., the given sequence is split into fixed windows,
each of size W (W = 32 in our tests). We set the initial state of the
NODE as the Corrective Jacobians required for the first frame as,

JE=0e R, (8)

To make this operable with ANODE [Dupont et al. 2019], we aug-
ment the initial state with extra dimensions. We follow the recom-
mendations of the original work and set the extra dimensions to
0 € R where A denotes the number of extra (augmented) dimen-
sions to be added. We use A = 256 for all our experiments. In essence,
these augmented dimensions act as a form of temporal memory for
the ODE. By lifting the state space to a higher dimensional space
where it can more easily predict the required trajectories, the sys-
tem is able to maintain a richer state representation of the motion’s
history. This simplifies the task of learning the corrective dynamics
needed to prevent drift. In other words, temporal message passing
helps predict the corrective Jacobians. Equation (8) becomes,

JE =0 e R+, )

We predict the correctives in the augmented space first, which is
driven by an MLP fc that predicts the rate of change of the correc-
tives in time. The function fr models the rate of change of the drift
based on conditioning factors,

aj¢ .

%?=ﬁﬂhiﬁwE%4J) (10)
where Jo, as defined previously, are the Jacobians of the first frame;
Eﬁ,n is the attention encoding of the current window of Jacobian
predictions Ji from Equation (7) and EC’H is the attention encod-
ing of the previous window of corrective predictions. Intuitively,
Eﬁ,n provides the context of the current motion’s structure, while
Eﬁ,n_l informs the model about the accumulated error from the previ-
ous window. We integrate the local changes over time using Euler’s
method to obtain ]kc at each time as,

. vajg . Eo :
je =/ a—’;dt+]0C =/ feUo, By, By, Ddt+ J5 . (1)
0 0

Since j]f is in the augmented space, we use a final linear projection
with learnable weights (W,) to map it back to the original unaug-
mented space. Specifically,

JE = Wolf (12)
where W, is simply the learnable weights of the last linear layer
projecting from (3 X 3) + A to the (3 X 3) Jacobian.

Our jointly trained attention encoders are defined as,

Eﬁ,ﬂ = Ep(kksw Tedsw)

Ey . = EcUbew Tek-w)s (13)
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where Ep and Ec are multi-head attention networks, Ji.x+w and
]ng—w are the block of sequential Jacobians in the current window
W and the past window W — 1, respectively; Ti.k+w and T,y are
the corresponding blocks of time instances in these windows, which
are positionally encoded.

Current Window: Per-Frame Posed Jacobians

o |2
[TTTTTTTTICITTITITTITT]

w-2

Previous Window: Augmented Corrective Jacobians
[Ep

Jre
Current Window: d Corrective Jacobians
CATTTITTITITTT]  CATTTTITTITITT]

Wp

Jre [fe
CATTTTTITTITT] CEATTTTITTITTT

[ we

Current Window: Corrective Jacobians

[ITTTTTTICITITITTIT ]
|

+

Current Window: Final Jacobians

Fig. 3. Windowed Jacobian Prediction. We use attention encodings of
the current window’s posed Jacobians (Eq 7) and the previous window’s
augmented corrective Jacobians (Eq 10) to predict the current window’s
augmented corrective Jacobians. These are projected to predict the current
window’s corrective Jacobians (Eq 12). These corrective’s are then added to
the posed Jacobians to obtain the current window’s final Jacobians. We use
window size W = 32.

These attention networks encode a window of Jacobians into a
single encoding as shown in Figure 3. Fixing the encoding sizes to
a constant size enables handling any arbitrary window/sequence
length without overflowing memory. The encoders distill the cur-
rent window of Jacobian predictions Ji.r+w and previously predicted
window of Corrective Jacobians ]ng—W' We pass the output of the
attention networks as conditioning to Equation (10) to integrate
and obtain the correctives in Equation (11) in the augmented space,
before projecting them in Equation (12) to obtain the final correc-
tives. We add the predicted correctives to the posed Jacobians Jj
from Equation (7). Finally, the predicted Jacobians J are spatially
integrated using a differentiable Poisson solve [Nicolet et al. 2021],
in the coordinate frame of the first frame, to obtain the predicted
shape X at frame number k.

Loss terms. We train end-to-end using only a shape loss over
vertices of X} and a Jacobian loss. No extra annotation is required
for supervision. Our final objective function is,

Lyertex = || Xk — X]?THZ and L]acobian =k - ]kGT”Z, (14)

aggregated together into the total loss as £ = Lyertex + @Ljacobian
with & = 0.05 in our experiments.

4 Evaluation

We test SMF along multiple axes: (i) generalization to unseen motion;
(ii) animation transfer to different characters (shapes and topology;
meshes and scans); (iii) motion specification using 3D keypoints,
using monocular videos, or sampling/interpolating in the Kinetic
Code (latent) space. No rigs or templates were used for any train-
ing or tests. We also test motion transfer from models trained on
humanoid characters to non-humanoids.
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Fig. 4. Unseen motion from Out-of-Distribution dataset (Mixamo) applied to in-the-wild shapes. We compare SMF with NJF, TR}, and Skeleton-free
transfer on unseen dance motions (left: Hiphop; right: Shuffle) sampled from the out-of-distribution Mixamo dataset, applied to a 3D character found
in-the-wild (hole man, left) and a Mixamo character (zombie, right). We modified NJF, TR) to use keypoints instead, indicated by superscript TF. Competing
methods exhibit distortion artifacts while attempting to follow the sampled source motion, while SMF (Ours) more accurately follows the sampled motion.

Source Motion

o o

NJF NJF

o o

o
TRJ TR)
le) O
© o 0 o
Skeleton-free Transfer Skeleton-free Transfer
SMF (Ours) SMF (Ours)

Fig. 5. Unseen motion applied to in-the-wild shapes. We compare SMF with NJF, TR), and skeleton-free transfer on unseen motion (left: Leg Backward
Rotation; right: One Leg Jump), applied to in-the-wild 3D characters. Baselines often do not adhere to source motion (circled in blue) or exhibit distortion
artifacts (circled in red). Our method transfers motion more accurately with far fewer shape distortion artifacts, while closely following the target motion.
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Table 1. Quantitative evaluation unseen motion category, unseen shape. We compare SMF (ours) performance on unseen motion categories, against
multiple competing methods as well as ablated versions of our method. We note that SMF consistently produces results with the lowest errors, when compared
against ground truth full body target meshes. Please refer to the supplemental webpage for videos.

Method One Leg Jump Chicken Wings Walk Shake Shoulders ‘ Knees Shake Arms Shake Hips
L2-V L2-6V 12 L2-N|L2V L12-6V L2-] L2-N |L2-V L2-6V 12 L2-N |L2-V L2-6V L2-J L2-N |L2V L2-5V L2] L2-N |L2-V L2-6V L2 L2-N |L2-V 12-6V L2-] L2-N
Skeleton-free transfer [Liao et al. 2022] | 4.60  0.67 0.44 13.67 | 3.27 065 0.50 1378 | 527 0.78 0.65 19.27 | 527 072 046 1397|471 062 040 1282|374 070 052 1539|383 075 0.56 16.19
SMF (3D) w/o yk encoding | 4.56  0.70  0.32 1256 | 422 0.68 035 1286|584 071 034 1292|419 0.68 030 11.85|520 0.77 036 13.79 | 5.21 0.80 044 1979 | 448 071 035 13.26
SMF (2D keypoints) | 5.74 072 0.33 1242|650 0.80 044 1943|687 079 036 1349 | 677 0.87 038 1563 | 833 0.88 039 14.81 | 881 096 0.50 2239|774 089 043 17.06
SMF (3D keypoints) | 2.79  0.51 0.25 9.82 | 374 0.61 0.34 12.72|3.73 0.54 0.27 10.24|3.09 0.58 0.28 11.44|3.78 0.63 030 11.27 | 441 0.69 041 1845 |3.40 0.58 0.31 12.28

Table 2. Quantitative evaluation on Mixamo motion (unseen dataset), unseen stylized character. We compare SMF (ours) against competing methods
and report averaged errors (over 3 characters per motion) against rig-based Mixamo [Mixamo 2025] meshes as groundtruth. To work with Mixamo, we
modified TR) and NJF to use keypoints instead of SMPL parameters, indicated by the superscript TF.

Method Hiphop shuffling Surprised Shaking Hands Arguing
< L2V 126V L2J  LaN | L2V L26V  L2J 12N | L2V 126V  L2J L2N | L2V  L26V  l2J  L2N | L2V 126V  L2J  L2N
Skeleton-free transfer [Liao et al. 2022] 12.41 4.61 1.08 32.28 13.72 3.81 0.83 25.51 13.24 2.79 0.70 21.14 17.44 2.75 0.67 20.48 14.35 2.60 0.69 20.85
NJFTF [Aigerman et al. 2022] | 2557 9.03 113 4594 | 2538 9.02 111 4567 | 2627 8.96 110 4524 | 3180 10.68 119 4580 | 2922 9.71 114 4526
TR]TF [Muralikrishnan et al. 2024] 15.23 5.86 0.87 35.09 16.91 6.62 0.85 33.54 14.22 5.20 0.64 24.95 15.99 5.94 0.73 30.25 15.17 5.39 0.70 28.62
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24.38

7.97

3.50

0.60

23.46

4.60

2.00

0.28

10.36

5.78

2.31

0.43

17.86

5.98

2.27

0.40

16.03

SMF (3D keypoints)

Table 3. Generalization of Kinetic Codes. We compare the reconstruction error of the kinetic codes of seen and unseen motion. The minimal variation in
reconstruction errors indicates the generalizability of our codes to varied unseen motions.

Seen Motion

Unseen Motion

Running Jumping Jacks Punching

Jiggle on Toes ‘ Shake Hips

Hips Shake Shoulders One Leg Jump Shake Arms Walk Chicken Wings

Error (in 1073 cm) 7.73 11.88 12.03 11.13 |

Motion datasets. We train our method (and baselines) on a single
dataset comprising of 5 human motion categories from the AMASS
dataset [Mahmood et al. 2019] with each category containing approx-
imately 6-7 motion sequences. We evaluate our method on unseen
motion categories from AMASS, sampled motions from Mixamo,
animal motion sequences from DeformingThings4D dataset [Li et al.
2021b], and in-the-wild monocular video recordings. The AMASS
dataset utilizes the SMPL body model [Loper et al. 2015], which
enables generation of motion sequences for diverse body-shapes
by varying the shape parameter, . Note that ours does not use this
SMPL information during training or inference.

To show that our method works on animals, we train our method
on motions from the DeformingThings4D dataset [Li et al. 2021b],
which provides animal 4D meshes as deforming sequences and test
it on unseen motion sequences.

We train SMF on 9 motion categories from AMASS, each consist-
ing of sequences performed by 6 humans. The number of frames
varies from 150-800. For 2D keypoints, we use 3 YouTube videos
(2 characters in total), totaling 1hr. Although the videos are noisy
as the camera angles change, SMF successfully learns due to the
Kinetic codes setup.

4.1 Baselines

We compare our method against recent per frame (pose transfer)
methods: NJF [Aigerman et al. 2022] and Skeleton-Free Pose Trans-
fer [Liao et al. 2022]. Due to unavailability of pre-processing code
for Skeleton-Free Pose Transfer, we use their pretrained models
which were trained on substantially more data including AMASS
and Mixamo motions as well as stylized characters. Additionally,
it requires the full mesh sequence along with T pose meshes for
source and target characters. In comparison, ours only takes in
sparse keypoints as input. We also compare ours with animation

6.88

8.36 8.34 8.51 7.95 8.96 7.89

transfer methods: TR] [Muralikrishnan et al. 2024] (which uses tem-
plate) and an ablated version of our method without the Kinetic
Code (yx) encoding. In the table below, we highlight the differences
between SMF and baseline methods.

Methods  Rig-Free  Template-Free  Temporally-Coherent Self-Supervised
NJF [Aigerman et al. 2022] 3 3 x x
Skeleton Free [Liao et al. 2022] x 3 X X
TR] [Muralikrishnan et al. 2024] 3 X 3 x
SMF (ours) 3 3 3 3
Method  Input Requirements

NJF [Aigerman et al. 2022]
Skeleton Free [Liao et al. 2022]
TRJ [Muralikrishnan et al. 2024]

SMPL Pose Parameters
T-Posed Source & Target characters, full body source motion
SMPL Pose and Bodyshape Parameters

SMF (ours)  Sparse Keypoints
NJFTF Modified & trained with Keypoints
TRJTF Modified & trained with Keypoints

4.2 Metrics and Target Shapes

We evaluate our animation transfer with four main metrics:

o Vertex-to-vertex error (L2-V): Measures the Euclidean dis-
tance between ground-truth and predicted mesh vertices,
indicating how well the global motion is captured.

e Velocity error (L2-0V): Quantifies differences in vertex ve-
locities across frames, capturing the temporal smoothness
and cohesion of the animation.

e Jacobian error (L2-J): Assesses deviations in local transfor-
mations, revealing unintended deformations.

e Angular error of surface normals (L2-N): Calculates the
angle between predicted and ground-truth normals, indicat-
ing preservation of local surface orientations.

Target Shapes. We evaluate our method on diverse target shapes
varied body shapes sampled from SMPL models, human scans from
the FAUST dataset [Bogo et al. 2014], characters from the Mix-
amo library (e.g., skeleton zombie, triceratop, wolf), and in-the-wild
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meshes from online 3D repositories (e.g., alien, hole-man). As pre-
processing, when applicable, we fixed non-manifold meshes.

4.3 Qualitative Results

Generalization to unseen motion and shape. We present video
results on various unseen motion and unseen shapes on our supple-
mentary webpage. Our method produces consistently better gen-
eralization to unseen motion categories compared to NJF and TR]J,
both of which result in shape distortion and erroneous displace-
ments as they struggle to follow the input (unseen) motion as seen
in Figure 4. This is particularly highlighted in scenarios with large
displacements, e.g., feet and hands are widened or stretched thin.
Note that unlike in the original TRJ [Muralikrishnan et al. 2024],
where specialized models were separately trained for each motion
type, we retrained a single TRJ, across all the motion types.

SMF also generalizes to new shapes of varied body types, in-
cluding non-humans despite being trained only on humans. This
correspondence from coarse keypoints to a dense mapping across
diverse shapes is learned during the self-supervised motion transfer
setup and proves to be even capable of generalizing to multi-legged
creatures. It preserves the source motion and target shape and the
resultant motion is realistic and free from jitters/artifacts. We show
comparative results on unseen motion transfer to in-the-wild target
meshes in Figure 4. For high-genus shapes, such as the mesh with
holes (right half of Figure 4), NJF distorts the shape; TR] fares com-
paratively better, it is still riddled with artifacts. Our Kinetic codes
not only preserve the target shape but also more faithfully adhere
to the motion. See supplemental webpage for video results.

Utilizing a latent representation for motion encoding with smooth
interpolation properties leads to improved generalization. Hence,
we do not see any significant artifacts even when operating on in-
the-wild unseen target shapes for unseen motion. Moreover, we
notice without our motion encoding, regions around joints may
show melting (see around feet in Figure 6). The same holds true for
more accurate bending of the joints (see Figure 4). We note that the
AMASS motions contain foot-skating artifacts, and ours faithfully
reproduces them. However, we also tested ours on high-quality
Mixamo motions as shown in Figure 4 and supplemental webpage,
where foot skating is less pronounced. Despite being trained only
on AMASS, our model successfully transfers these clean Mixamo
motions without introducing any additional skating artifacts. This
demonstrates the model’s generalization not only to unseen motions
but also to different levels of motion quality. This further suggests
that our self-supervised setting is promising and training on higher-
quality motion samples would likely yield better results.

Figure 1 and Figure 8 show more animation transfer examples
to different humanoids and non-humanoids target meshes, sourced
from online in-the-wild meshes and the SHREC’07 dataset [Giorgi
et al. 2007]. Moreover, Figure 1 showcases support for different types
of coarse motion specifications. In Figure 7, we show retargetting
results on target animal shapes from the D4D dataset.

Generalization to Mixamo sampled motions on stylized charac-
ters. To transfer motion from Mixamo [Mixamo 2025], we map its
joint locations (3D keypoints) to our system, (note the mapping is
not perfect due to misalignment between joint locations, requiring
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Source Motion

Neural Jacobian Fields

Temporal Residual Jacobians

N

Skeleton-free Transfer

SMF (ours)

Fig. 6. Comparison of SMF with baselines. We compare SMF with Neu-
ral Jacobian Fields [Aigerman et al. 2022], Temporal Residual Jacobians [Mu-
ralikrishnan et al. 2024], and template-free skeleton-free transfer [Liao et al.
2022]. We measure the vertex-to-vertex error with ground truth and color-
code the results according to the measured error. Darker red indicates higher
error. SMF accurately transfers the motion to the target mesh, while base-
lines struggle to follow the input motion and exhibit distortion artifacts.

source motion: bear attack

target shape: wolf

source motion: deer walk

target shape: wolf

target shape: triceratop

Fig. 7. Unseen motion to animal shapes. We use SMF for animation
transfer to animal shapes (wolf and triceratop) for different source motions
(top: bear attack; bottom: deer walk). Our method transfers motion faith-
fully while closely following the target motion (see supplemental videos).
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Fig. 8. Human to non-human motion transfer Left: We compare SMF with NJF, TRJ, and skeleton-free transfer on the task of transferring human motion
to non-human characters. Since bodyshape parameters are unavailable for these animals, we utilize modified NJF and TR) models trained on keypoints, as
indicated by superscript TF. SMF, without using SMPL bodyshape parameters, generalizes to wider range of shapes without distortion artifacts. Right: SMF
transfers varied unseen motions to several Out-of-Distribution characters. Unlike template-based methods, SMF does not use any body-shape descriptor.

some approximation). Our results demonstrate strong generaliza-
tion, transferring these motions even to different characters. Notably,
TRJ [Muralikrishnan et al. 2024] and NJF [Aigerman et al. 2022]
are unable to operate on Mixamo motion, as they strictly depend
on the SMPL template, which significantly limits their flexibility.
Therefore, we modify their architecture to handle 3D coordinates
and remove the shape parameter (f) module from TR]J. Please see
supplemental videos on the webpage for comparison. We further
evaluate it on 5 different motions on 3 stylized characters with
ground truth generated from Mixamo. As seen in Table 2, we see
large improvements over existing methods. Except Skeleton-free
transfer (additionally trained on Mixamo data and stylized charac-
ters), all other baselines have been trained solely on the AMASS
dataset with human characters.

Generalization to monocular capture. SMF can directly transfer
raw motion sequences from 2D input videos captured on handheld
cameras to a 3D target shape. We use our formulation based on
2D keypoints to directly operate on 2D input frames. This is a
particularly challenging problem as we are lifting motion from 2D
to a 3D shape without any explicit supervision or template shape. For
our 2D training setup, we additionally train only the autoencoder
on in-the-wild videos of exercise videos totaling 1 hour. We note
this is noisy but this helps the y; generalize to RGB captures better

as all our 2D renderings of AMASS sequences have a similar camera
setup. We extract 2D keypoints using HRNet [Sun et al. 2019], which
computes 2D keypoints frame by frame. We use Savitzky-Golay filter
to smoothen the 2D signal as there is inter-frame noise.

Self-supervised training. Our self-supervised setup enables us to
learn motion transfer without requiring a template shape and using
only coarse motion parameters extracted at joints from the motion
dataset. This setup is the key to enabling learning from coarse input
motion (2D/3D keypoints) and transferring motion from 2D monoc-
ular captures and Mixamo sampled motion to 3D target shapes.

4.4 Quantitative Comparison

We present quantitative results on unseen motion category and un-
seen motion sequence (within the same category) to unseen shape
in Tables 1 and 2. Generalization to unseen motion is a particularly
challenging problem as the Poisson solve in NJF and TR] facilitates
shape preservation for unseen shape by following the coordinates of
the source shape. However, there is no such aid when generalizing to
unseen motion, which is an extrapolation problem. Our method sig-
nificantly outperforms NJF and TR] for both motion accuracy as well
as detail preservation. The benefits of our y are highlighted here as
we see significantly lower errors against a baseline of SMF without
v encoding. Compared to the per-frame pose transfer performed
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Fig. 9. Temporal stability and comparison on very long motion sequences. We compare SMF and TR] on various unseen folk dance sequences (10000
frames) from the AMASS dataset. Top. Qualitative comparison on two unseen dance sequence. As the sequence progresses (frame numbers at top), TRJ
accumulates significant error, exacerbating distortion artifacts. In contrast, SMF follows the source motion more closely. Bottom. Per-frame vertex-to-vertex

(L2-V) error plots for three unseen dance sequences. TR displays a monotonically increasing error trend due to accumulation, while SMF maintains a
consistently low error profile. This demonstrates SMF’s robustness to temporal drift and its suitability for generating long motion sequences.

by Skeleton-Free Pose Transfer which has numerous artifacts and
unnatural deformations, SMF also ensures temporal consistency as
seen in lower velocity error (L2-5V), measuring motion smoothness.

Error accumulation on long motion transfer. We choose 3 unseen,
complex, and long dance sequences (10000 frames) to analyze error
accumulation. We report per frame vertex-to-vertex (L2-V) error
in Figure 9. Compared to the only other temporal method, TR],
SMF does not exhibit a trend of monotonically increasing error
demonstrating its robustness to temporal drift and its suitability for
generating long motion sequences. The initial spike in error is due
to the motion moving away from the easy-to-model rest pose.

4.5 Performance

SMF’s lightweight architecture enables inference at >30 FPS on a
single RTX 4090 for a mesh with 30k faces (for high number of faces
this will be slower). This makes our system suitable for real-time
applications, following a one-time preprocessing step to compute
features on the target mesh. Furthermore, when using 2D keypoints,
the system could potentially be extended for real-time 2D-to-3D
animation transfer, as keypoint extraction with HRNet [Sun et al.
2019] is highly efficient.
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5 Conclusion

We have presented Self-supervised Motion Fields that convert sparse
motion into full-body character motion. We enable this by first
creating a temporally-informed motion latent space — Kinetic codes
- and then utilizing it to train spatial and temporal gradient predictor
networks jointly. The gradient signals are coupled via spatial and
temporal integration, and trained using full-body mesh sequences
for supervision. SMF does not require additional motion annotation,
is simple and robust to train, and generalizes across unseen motion
and character shape variations. We also do not use any template
model or rig, either during training or inference. We establish a new
SOTA on the AMASS dataset.

Limitations. While our formulation captures some secondary mo-
tion, we do not model secondary dynamics in any physically correct
way. Neither do we explicitly support collision handling to prevent
self-intersection (see the triceratop leg crossing in Figure 7). An
interesting future direction would be to implicitly handle collision
detection and simultaneously model character-garment interactions,
possibly using a transformer-based attention mechanism to capture
non-local interactions between body parts. Similar to single human
bodies [Frithstiick et al. 2022], it will be interesting to combine dif-
ferent motion generators for different parts of a character, allowing
mixing of motion modes. Finally, temporal sketching sequences [Fu
et al. 2011] can also be modeled with such a generative framework.
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